
CHAPTER 27

WWWandHTTP

The World Wide Web (WWW) is a repository of information linked together from
points all over the world. The WWW has a unique combination of flexibility, portability,
and user-friendly features that distinguish it from other services provided by the Internet.
The WWW project was initiated by CERN (European Laboratory for Particle Physics)
to create a system to handle distributed resources necessary for scientific research. In
this chapter we first discuss issues related to the Web. We then discuss a protocol,
HTTP, that is used to retrieve information from the Web.

27.1 ARCHITECTURE
The WWW today is a distributed clientJserver service, in which a client using a browser
can access a service using a server. However, the service provided is distributed over
many locations called sites, as shown in Figure 27.1.

Figure 27.1 Architecture ofWWW

Client

Web page A

Site A- D
Site B-

851



852 CHAPTER 27 WWW AND HTTP

Each site holds one or more documents, referred to as Web pages. Each Web page can
contain a link to other pages in the same site or at other sites. The pages can be retrieved
and viewed by using browsers. Let us go through the scenario shown in Figure 27.1. The
client needs to see some information that it knows belongs to site A. It sends a request
through its browser, a program that is designed to fetch Web documents. The request,
among other information, includes the address of the site and the Web page, called the
URL, which we will discuss shortly. The server at site A finds the document and sends it
to the client. When the user views the document, she finds some references to other docu­
ments, including a Web page at site B. The reference has the URL for the new site. The
user is also interested in seeing this document. The client sends another request to the new
site, and the new page is retrieved.

Client (Browser)

A variety of vendors offer commercial browsers that interpret and display a Web docu­
ment, and all use nearly the same architecture. Each browser usually consists of three
parts: a controller, client protocol, and interpreters. The controller receives input from
the keyboard or the mouse and uses the client programs to access the document. After
the document has been accessed, the controller uses one of the interpreters to display the
document on the screen. The client protocol can be one of the protocols described previ­
ously such as FfP or HTIP (described later in the chapter). The interpreter can be HTML,
Java, or JavaScript, depending on the type of document. We discuss the use of these
interpreters based on the document type later in the chapter (see Figure 27.2).

Figure 27.2 Browser

Browser

Interpreters

Server

The Web page is stored at the server. Each time a client request arrives, the corresponding
document is sent to the client. To improve efficiency, servers normally store requested
files in a cache in memory; memory is faster to access than disk. A server can also
become more efficient through multithreading or multiprocessing. In this case, a server
can answer more than one request at a time.



SECTION 27.1 ARCHITECTURE 853

Uniform Resource Locator

A client that wants to access a Web page needs the address. To facilitate the access of doc­
uments distributed throughout the world, HTTP uses locators. The uniform resource
locator (URL) is a standard for specifying any kind of information on the Internet. The
URL defines four things: protocol, host computer, port, and path (see Figure 27.3).

Figure 27.3 URL

I Protocol 1:// I Host

The protocol is the client/server program used to retrieve the document. Many
different protocols can retrieve a document; among them are FTP or HTTP. The most
common today is HTTP.

The host is the computer on which the information is located, although the name of
the computer can be an alias. Web pages are usually stored in computers, and computers
are given alias names that usually begin with the characters "www". This is not mandatory,
however, as the host can be any name given to the computer that hosts the Web page.

The URL can optionally contain the port number of the server. If the port is
included, it is inserted between the host and the path, and it is separated from the host
by a colon.

Path is the pathname of the file where the information is located. Note that the path
can itself contain slashes that, in the UNIX operating system, separate the directories
from the subdirectories and files.

Cookies
The World Wide Web was originally designed as a stateless entity. A client sends a
request; a server responds. Their relationship is over. The original design of WWW,
retrieving publicly available documents, exactly fits this purpose. Today the Web has
other functions; some are listed here.

I. Some websites need to allow access to registered clients only.

2. Websites are being used as electronic stores that allow users to browse through the
store, select wanted items, put them in an electronic cart, and pay at the end with a
credit card.

3. Some websites are used as portals: the user selects the Web pages he wants to see.

4. Some websites are just advertising.

For these purposes, the cookie mechanism was devised. We discussed the use of cook­
ies at the transport layer in Chapter 23; we now discuss their use in Web pages.

Creation and Storage of Cookies

The creation and storage of cookies depend on the implementation; however, the principle
is the same.



854 CHAPTER 27 WWWAND HTTP

1. When a server receives a request from a client, it stores information about the client
in a file or a string. The information may include the domain name of the client, the
contents of the cookie (information the server has gathered about the client such as
name, registration number, and so on), a timestamp, and other information'depend­
ing on the implementation.

2. The server includes the cookie in the response that it sends to the client.

3. When the client receives the response, the browser stores the cookie in the cookie
directory, which is sorted by the domain server name.

Using Cookies

When a client sends a request to a server, the browser looks in the cookie directory to
see if it can find a cookie sent by that server. If found, the cookie is included in the
request. When the server receives the request, it knows that this is an old client, not a
new one. Note that the contents of the cookie are never read by the browser or disclosed
to the user. It is a cookie made by the server and eaten by the server. Now let us see how
a cookie is used for the four previously mentioned purposes:

1. The site that restricts access to registered clients only sends a cookie to the client
when the client registers for the first time. For any repeated access, only those clients
that send the appropriate cookie are allowed.

2. An electronic store (e-commerce) can use a cookie for its client shoppers. When a
client selects an item and inserts it into a cart, a cookie that contains information
about the item, such as its number and unit price, is sent to the browser. If the client
selects a second item, the cookie is updated with the new selection information. And
so on. When the client finishes shopping and wants to check out, the last cookie is
retrieved and the total charge is calculated.

3. A Web portal uses the cookie in a similar way. When a user selects her favorite
pages, a cookie is made and sent. If the site is accessed again, the cookie is sent to
the server to show what the client is looking for.

4. A cookie is also used by advertising agencies. An advertising agency can place
banner ads on some main website that is often visited by users. The advertising
agency supplies only a URL that gives the banner address instead of the banner itself.
When a user visits the main website and clicks on the icon of an advertised corpora­
tion, a request is sent to the advertising agency. The advertising agency sends the
banner, a GIF file, for example, but it also includes a cookie with the ill of the user.
Any future use of the banners adds to the database that profiles the Web behavior of
the user. The advertising agency has compiled the interests of the user and can sell
this information to other parties. This use of cookies has made them very controver­
sial. Hopefully, some new regulations will be devised to preserve the privacy of users.

27.2 WEB DOCUMENTS
The documents in the WWW can be grouped into three broad categories: static, dynamic,
and active. The category is based on the time at which the contents of the document are
determined.



SECTION 27.2 WEB DOCUMENTS 855

Static Documents
Static documents are fixed-content documents that are created and stored in a server.
The client can get only a copy of the document. In other words, the contents of the file
are determined when the file is created, not when it is used. Of course, the contents in
the server can be changed, but the user cannot change them. When a client accesses the
document, a copy of the document is sent. The user can then use a browsing program to
display the document (see Figure 27.4).

Figure 27.4 Static document

Server
Client
r

- -
Request

Static HTML document

HTML

Hypertext Markup Language (HTML) is a language for creating Web pages. The
term markup language comes from the book publishing industry. Before a book is type­
set and printed, a copy editor reads the manuscript and puts marks on it. These marks
tell the compositor how to format the text. For example, if the copy editor wants part of
a line to be printed in boldface, he or she draws a wavy line under that part. In the same
way, data for a Web page are formatted for interpretation by a browser.

Let us clarify the idea with an example. To make part of a text displayed in boldface
with HTML, we put beginning and ending boldface tags (marks) in the text, as shown
in Figure 27.5.

Figure 27.5 Boldface tags

I BOl~ 1 ! !7bOld ]

<B> This is the text to be boldfaced.<!B>

The two tags <B> and </B> are instructions for the browser. When the browser
sees these two marks, it knows that the text must be boldfaced (see Figure 27.6).

A markup language such as HTML allows us to embed formatting instructions in
the file itself. The instructions are included with the text. In this way, any browser can
read the instructions and format the text according to the specific workstation. One might



856 CHAPTER 27 WWW AND HTTP

Figure 27.6 Effect ofboldface tags

Browser

ask why we do not use the fonnatting capabilities of word processors to create and save
formatted text. The answer is that different word processors use different techniques or
procedures for formatting text. For example, imagine that a user creates formatted text on
a Macintosh computer and stores it in a Web page. Another user who is on an IBM com­
puter would not be able to receive the Web page because the two computers use different
fonnatting procedures.

HTML lets us use only ASCII characters for both the main text and formatting
instructions. In this way, every computer can receive the whole document as an ASCII
document. The main text is the data, and the formatting instructions can be used by the
browser to format the data.

A Web page is made up of two parts: the head and the body. The head is the first part
of a Web page. The head contains the title of the page and other parameters that the
browser will use. The actual contents of a page are in the body, which includes the text and
the tags. Whereas the text is the actual infonnation contained in a page, the tags define the
appearance of the document. Every HTML tag is a name followed by an optional list of
attributes, all enclosed between less-than and greater-than symbols « and >).

An attribute, if present, is followed by an equals sign and the value of the attribute.
Some tags can be used alone; others must be used in pairs. Those that are used in pairs
are called beginning and ending tags. The beginning tag can have attributes and values
and starts with the name of the tag. The ending tag cannot have attributes or values but
must have a slash before the name of the tag. The browser makes a decision about the
structure of the text based on the tags, which are embedded into the text. Figure 27.7
shows the fonnat of a tag.

Figure 27.7 Beginning and ending tags

< TagNarne

a. Beginning tag

Attribute = Value Attribute = Value ••• >

1_- <_rr_a_gN_arn_e_> 1
b. Ending tag

One commonly used tag category is the text formatting tags such as <B> and <!B>,
which make the text bold; <1> and <II>, which make the text italic; and <U> and <IV>,
which underline the text.



SECTION 27.2 WEB DOCUMENTS 857

Another interesting tag category is the image tag. Nontextual information such as
digitized photos or graphic images is not a physical part of an HTML document. But
we can use an image tag to point to the file of a photo or image. The image tag defines
the address (URL) of the image to be retrieved. It also specifies how the image can be
inserted after retrievaL We can choose from several attributes. The most common are
SRC (source), which defines the source (address), and ALIGN, which defines the align­
ment of the image. The SRC attribute is required. Most browsers accept images in the
GIF or IPEG formats. For example, the following tag can retrieve an image stored as
imagel.gif in the directory /bin/images:

A third interesting category is the hyperlink tag, which is needed to link documents
together. Any item (word, phrase, paragraph, or image) can refer to another document
through a mechanism called an anchor. The anchor is defined by <A ... > and <!A> tags,
and the anchored item uses the URL to refer to another document. When the document
is displayed, the anchored item is underlined, blinking, or boldfaced. The user can click
on the anchored item to go to another document, which mayor may not be stored on
the same server as the original document. The reference phrase is embedded between the
beginning and ending tags. The beginning tag can have several attributes, but the one
required is HREF (hyperlink reference), which defines the address (URL) of the linked
document. For example, the link to the author of a book can be

What appears in the text is the word Author, on which the user can click to go to the
author's Web page.

Dynamic Documents

A dynamic document is created by a Web server whenever a browser requests the doc­
ument. When a request arrives, the Web server runs an application program or a script
that creates the dynamic document. The server returns the output of the program or
script as a response to the browser that requested the document. Because a fresh docu­
ment is created for each request, the contents of a dynamic document can vary from
one request to another. A very simple example of a dynamic document is the retrieval
of the time and date from a server. Time and date are kinds of information that are
dynamic in that they change from moment to moment. The client can ask the server to
run a program such as the date program in UNIX and send the result of the program to
the client.

Common Gateway Interface (CGI)

The Common Gateway Interface (CGI) is a technology that creates and handles
dynamic documents. CGI is a set of standards that defines how a dynamic document is
written, how data are input to the program, and how the output result is used.



858 CHAPTER 27 WWW AND HTTP

COl is not a new language; instead, it allows programmers to use any of several
languages such as C, C++, Boume Shell, Kom Shell, C Shell, Tcl, or Perl. The only
thing that CGI defines is a set of rules and tenns that the programmer must follow.

The tenn common in COl indicates that the standard defines a set of rules that is
common to any language or platfonn. The tenn gateway here means that a COl pro­
gram can be used to access other resources such as databases, graphical packages, and
so on. The tenn interface here means that there is a set of predefined tenns, variables,
calls, and so on that can be used in any COl program. A COl program in its simplest
fonn is code written in one of the languages supporting COL Any programmer who can
encode a sequence of thoughts in a program and knows the syntax of one of the above­
mentioned languages can write a simple CGI program. Figure 27.8 illustrates the steps
in creating a dynamic program using COl technology.

Figure 27.8 Dynamic document using CGI

Client

Request

Dynamic HTML document

Server

i
Program

Input In traditional programming, when a program is executed, parameters can be
passed to the program. Parameter passing allows the programmer to write a generic
program that can be used in different situations. For example, a generic copy program
can be written to copy any file to another. A user can use the program to copy a file
named x to another file named y by passing x and y as parameters.

The input from a browser to a server is sent by using aform. If the infonnation in a
fonn is small (such as a word), it can be appended to the URL after a question mark. For
example, the following URL is carrying fonn infonnation (23, a value):

http://www.deanzalcgi-binlprog.pl?23

When the server receives the URL, it uses the part of the URL before the question
mark to access the program to be run, and it interprets the part after the question mark
(23) as the input sent by the client. It stores this string in a variable. When the CGI
program is executed, it can access this value.

If the input from a browser is too long to fit in the query string, the browser can ask
the server to send a fonn. The browser can then fill the fonn with the input data and
send it to the server. The infonnation in the fonn can be used as the input to the COl
program.



SECTION 27.2 ltEB DOCUMENTS 859

Output The whole idea of CGI is to execute a CGI program at the server site and
send the output to the client (browser). The output is usually plain text or a text with
HTML structures; however, the output can be a variety of other things. It can be graphics
or binary data, a status code, instructions to the browser to cache the result, or instruc­
tions to the server to send an existing document instead of the actual output.

To let the client know about the type of document sent, a CGI program creates
headers. As a matter of fact, the output of the CGI program always consists of two
parts: a header and a body. The header is separated by a blank line from the body. This
means any CGI program creates first the header, then a blank line, and then the body.
Although the header and the blank line are not shown on the browser screen, the header
is used by the browser to interpret the body.

Scripting Technologies for Dynamic Documents

The problem with CGI technology is the inefficiency that results if part of the dynamic
document that is to be created is fixed and not changing from request to request. For
example, assume that we need to retrieve a list of spare parts, their availability, and
prices for a specific car brand. Although the availability and prices vary from time to
time, the name, description, and the picture of the parts are fixed. If we use CGI, the
program must create an entire document each time a request is made. The solution is to
create a file containing the fixed part of the document using HTML and embed a script,
a source code, that can be run by the server to provide the varying availability and price
section. Figure 27.9 shows the idea.

Figure 27.9 Dynamic document using server-site script

Client
f""

- -
Request

Server
~

Dynamic HTML document

1-------ir;:;t1Run the script (8)
inside the HTML
document

A few technologies have been involved in creating dynamic documents using scripts.
Among the most common are Hypertext Preprocessor (pHP), which uses the Perl lan­
guage; Java Server Pages (JSP), which uses the Java language for scripting; Active
Server Pages (ASP), a Microsoft product which uses Visual Basic language for scripting;
and ColdFusion, which embeds SQL database queries in the HTML document.

Dynamic documents are sometimes referred to as
server-site dynamic documents.



860 CHAPTER 27 WWW AND HTTP

Active Documents

For many applications, we need a program or a script to be run at the client site. These
are called active documents. For example, suppose we want to run a program that
creates animated graphics on the screen or a program that interacts with the user. The
program definitely needs to be run at the client site where the animation or interaction
takes place. When a browser requests an active document, the server sends a copy of the
document or a script. The document is then run at the client (browser) site.

Java Applets

One way to create an active document is to use Java applets. Java is a combination of a
high-level programming language, a run-time environment, and a class library that
allows a programmer to write an active document (an applet) and a browser to run it. It
can also be a stand-alone program that doesn't use a browser.

An applet is a program written in Java on the server. It is compiled and ready to be
run. The document is in byte-code (binary) format. The client process (browser) creates
an instance of this applet and runs it. A Java applet can be run by the browser in two
ways. In the first method, the browser can directly request the Java applet program in
the URL and receive the applet in binary form. In the second method, the browser can
retrieve and run an HTML file that has embedded the address of the applet as a tag. Fig­
ure 27.10 shows how Java applets are used in the first method; the second is similar but
needs two transactions.

Figure 27.10 Active document using Java applet

Client

- -
Request

Server-
~-----l Applet t------I

Run the applet
to get the result

Result

JavaScript

The idea of scripts in dynamic documents can also be used for active documents. If the
active part of the document is small, it can be written in a scripting language; then it can
be interpreted and run by the client at the same time. The script is in source code (text)
and not in binary form. The scripting technology used in this case is usually JavaScript.
JavaScript, which bears a small resemblance to Java, is a very high level scripting
language developed for this purpose. Figure 27.11 shows how JavaScript is used to create
an active document.



SECTION 27.3 HTTP 861

Figure 27.11 Active document using client-site script

Server
Client

Request

Run the JavaScript (JS)
to get the result

Result

Active documents are sometimes referred to as client-site dynamic documents.

27.3 HTTP
The Hypertext Transfer Protocol (HTTP) is a protocol used mainly to access data on
the World Wide Web. HTTP functions as a combination of FTP and SMTP. It is similar to
FfP because it transfers files and uses the services of TCP. However, it is much simpler
than FfP because it uses only one TCP connection. There is no separate control connec­
tion; only data are transferred between the client and the server.

HTTP is like SMTP because the data transferred between the client and the server
look like SMTP messages. In addition, the format of the messages is controlled by
MIME-like headers. Unlike SMTP, the HTTP messages are not destined to be read by
humans; they are read and interpreted by the HTTP server and HTTP client (browser).
SMTP messages are stored and forwarded, but HTTP messages are delivered immedi­
ately. The commands from the client to the server are embedded in a request message.
The contents of the requested file or other information are embedded in a response
message. HTTP uses the services of TCP on well-known port 80.

HTTP uses the services of TCP on well-known port 80.

HTTP Transaction

Figure 27.12 illustrates the HTTP transaction between the client and server. Although
HTTP uses the services of TCP, HTTP itself is a stateless protocol. The client initializes
the transaction by sending a request message. The server replies by sending a response.

Messages

The formats of the request and response messages are similar; both are shown in Fig­
ure 27.13. A request message consists of a request line, a header, and sometimes a body.
A response message consists of a status line, a header, and sometimes a body.



862 CHAPTER 27 WWW AND HTTP

Figure 27.12 HTTP transaction

Client

Request

Figure 27.13 Request and response messages

Headers

A blank line

Request message

Server

===u:u::u
E::::l-

A blank line

Response message

Request and Status Lines The first line in a request message is called a request line;
the first line in the response message is called the status line. There is one common
field, as shown in Figure 27.14.

Figure 27.14 Request and status lines

Space Space

Request type I ~ ~ I HTTP version

a. Request line

Space Space

I~ ~ IHTTP version Status phrase

b. Status line



SECTION 27.3 HTTP 863

o Request type. This field is used in the request message. In version 1.1 of HTTP,
several request types are defined. The request type is categorized into methods as
defined in Table 27.1.

Table 27.1 Methods

Method Action

GET Requests a document from the server

HEAD Requests information about a document but not the document itself

POST Sends some information from the client to the server

PUT Sends a document from the server to the client

TRACE Echoes the incoming request

CONNECT Reserved

OPTION Inquires about available options

o URL. We discussed the URL earlier in the chapter.

o Version. The most current version of HTTP is 1.1.

o Status code. This field is used in the response message. The status code field is
similar to those in the FTP and the SMTP protocols. It consists of three digits.
Whereas the codes in the 100 range are only informational, the codes in the 200
range indicate a successful request. The codes in the 300 range redirect the client
to another URL, and the codes in the 400 range indicate an error at the client site.
Finally, the codes in the 500 range indicate an error at the server site. We list the
most common codes in Table 27.2.

o Status phrase. This field is used in the response message. It explains the status
code in text form. Table 27.2 also gives the status phrase.

Table 27.2 Status codes

Code Phrase Description

Informational

100 Continue The initial part of the request has been received, and the
client may continue with its request.

101 Switching The server is complying with a client request to switch
protocols defined in the upgrade header.

Success

200 OK The request is successful.

201 Created A new URL is created.

202 Accepted The request is accepted, but it is not immediately acted upon.

204 No content There is no content in the body.



864 CHAPTER 27 WWW AND HITP

Table 27.2 Status codes (continued)

Code Phrase Description

Redirection

301 Moved permanently The requested URL is no longer used by the server.

302 Moved temporarily The requested URL has moved temporarily.

304 Not modified The document has not been modified.

Client Error

400 Bad request There is a syntax error in the request.

401 Unauthorized The request lacks proper authorization.

403 Forbidden Service is denied.

404 Not found The document is not found.

405 Method not allowed The method is not supported in this URL.

406 Not acceptable The format requested is not acceptable.

Server Error

500 Internal server error There is an error, such as a crash, at the server site.

501 Not implemented The action requested cannot be performed.

503 Service unavailable The service is temporarily unavailable, but may be requested
in the future.

Header The header exchanges additional information between the client and the server.
For example, the client can request that the document be sent in a special format, or the
server can send extra information about the document. The header can consist of one or
more header lines. Each header line has a header name, a colon, a space, and a header
value (see Figure 27.15). We will show some header lines in the examples at the end of
this chapter. A header line belongs to one of four categories: general header, request
header, response header, and entity header. A request message can contain only gen­
eral, request, and entity headers. A response message, on the other hand, can contain only
general, response, and entity headers.

Figure 27.15 Header format

Space

I Header name lOt I Header value I

o General header The general header gives general information about the message
and can be present in both a request and a response. Table 27.3 lists some general
headers with their descriptions.



SECTION 27.3 HTTP 865

Table 27.3 General headers

Header Description

Cache-control Specifies infonnation about caching

Connection Shows whether the connection should be closed or not

Date Shows the current date

MIME-version Shows the MIME version used

Upgrade Specifies the preferred communication protocol

o Request header The request header can be present only in a request message. It
specifies the client's configuration and the client's preferred document format. See
Table 27.4 for a list of some request headers and their descriptions.

Table 27.4 Request headers

Header Description

Accept Shows the medium fonnat the client can accept

Accept-charset Shows the character set the client can handle

Accept-encoding Shows the encoding scheme the client can handle

Accept-language Shows the language the client can accept

Authorization Shows what pennissions the client has

From Shows the e-mail address of the user

Host Shows the host and port number of the server

If-modified-since Sends the document if newer than specified date

If-match Sends the document only if it matches given tag

If-non-match Sends the document only if it does not match given tag
~'- '-_._-- -- _._---.__.. _-

If-range Sends only the portion of the document that is missing

If-unmodified-since Sends the document if not changed since specified date

Referrer Specifies the URL of the linked document

User-agent Identifies the client program

o Response header The response header can be present only in a response message.
It specifies the server's configuration and special information about the request.
See Table 27.5 for a list of some response headers with their descriptions.

Table 27.5 Response headers

Header Description

Accept-range Shows if server accepts the range requested by client

Age Shows the age of the document

Public Shows the supported list of methods

Retry-after Specifies the date after which the server is available

Server Shows the server name and version number



866 CHAPTER 27 WWW AND HTTP

o Entity header The entity header gives infonnation about the body of the docu­
ment. Although it is mostly present in response messages, some request messages,
such as POST or PUT methods, that contain a body also use this type of header.
See Table 27.6 for a list of some entity headers and their descriptions.

Table 27.6 Entity headers

Header Description

Allow Lists valid methods that can be used with a URL

Content-encoding Specifies the encoding scheme

Content-language Specifies the language

Content-length Shows the length of the document

Content-range Specifies the range of the document

Content-type Specifies the medium type

Etag Gives an entity tag

Expires Gives the date and time when contents may change

Last-modified Gives the date and time of the last change

Location Specifies the location of the created or moved document

Body The body can be present in a request or response message. Usually, it contains
the document to be sent or received.

Example 27.1

This example retrieves a document. We use the GET method to retrieve an image with the
path /usr/bin/imagel. The request line shows the method (GET), the URL, and the HTTP ver­
sion (1.1). The header has two lines that show that the client can accept images in the GIF or
JPEG format. The request does not have a body. The response message contains the status line
and four lines of header. The header lines define the date, server, MIME version, and length of the
document. The body of the document follows the header (see Figure 27.16).

Figure 27.16 Example 27.1

Servercr tlen =g ~

cu:::u::J
E::I

Request (GET method) -=p=

GET lusrlbinlimage1 HTTP/l.l
Accept: image/gif
Accept: image/jpeg

HTIP/l.l 200 OK
Date: Mon, 07-Jan-05 13:15:14 GMT
Server: Challenger
MIME-version: l.0
Content-length: 2048

(Body of the document)

Response



SECTION 27.3 HTTP 867

Example 27.2

In this example, the client wants to send data to the server. We use the POST method. The request
line shows the method (POST), URL, and HTTP version (1.1). There are four lines of headers.
The request body contains the input information. The response message contains the status line
and four lines of headers. The created document, which is a CGI document, is included as the body
(see Figure 27.17).

Figure 27.17 Example 27.2

Request (POST method)

POST /cgi-binldoc.pl HTIP/1.l
Accept: */*
Accept: image/gif

I-----t Accept: image/jpeg
Content-length: 50

(Input information)

HTTP/l.1 200 OK
Date: Mon, 07-Jan-02 13:15:14 GMT
Server: Challenger

~---t MIME-version: 1.0
Content-length: 2000

(Body of the document)

Response

Example 27.3

HTTP uses ASCII characters. A client can directly connect to a server using TELNET, which
logs into port 80. The next three lines show that the connection is successful.

We then type three lines. The first shows the request line (GET method), the second is the
header (defining the host), the third is a blank, terminating the request.

The server response is seven lines starting with the status line. The blank line at the end termi­
nates the server response. The file of 14,230 lines is received after the blank line (not shown here).
The last line is the output by the client.

$ teinet www.mhhe.com 80
Trying 198.45.24.104 ...
Connected to www.mhhe.com (198.45.24.104).
Escape character is 11\]'.
GET /engcslcompscilforouzan HTTP/I.t
From: forouzanbehrouz@fbda.edu

HTTP/t.l 200 OK
Date: Thu, 28 Oct 2004 16:27:46 GMT
Server: Apache/l.3.9 (Unix) ApacheJServ/1.1.2 PHP/4.1.2 PHP/3.0.18
MIME-version:1.0
Content-Type: text/html



868 CHAPTER 27 WWW AND HTTP

Last-modified: Friday, 15-0ct-04 02:11:31 GMT
Content-length: 14230

Connection closed by foreign host.

Persistent Versus Nonpersistent Connection
HTTP prior to version 1.1 specified a nonpersistent connection, while a persistent con­
nection is the default in version 1.1.

Nonpersistent Connection

In a nonpersistent connection, one TCP connection is made for each request/response.
The following lists the steps in this strategy:

1. The client opens a TCP connection and sends a request.

2. The server sends the response and closes the connection.

3. The client reads the data until it encounters an end-of-file marker; it then closes the
connection.

In this strategy, for N different pictures in different files, the connection must be opened
and closed N times. The nonpersistent strategy imposes high overhead on the server
because the server needs N different buffers and requires a slow start procedure each
time a connection is opened.

Persistent Connection

HTTP version 1.1 specifies a persistent connection by default. In a persistent connection,
the server leaves the connection open for more requests after sending a response. The
server can close the connection at the request of a client or if a time-out has been reached.
The sender usually sends the length of the data with each response. However, there are
some occasions when the sender does not know the length of the data. This is the case
when a document is created dynamically or actively. In these cases, the server informs
the client that the length is not known and closes the connection after sending the data so
the client knows that the end of the data has been reached.

HTTP version 1.1 specifies a persistent connection by default.

Proxy Server
HTTP supports proxy servers. A proxy server is a computer that keeps copies of
responses to recent requests. The HTTP client sends a request to the proxy server. The
proxy server checks its cache. If the response is not stored in the cache, the proxy
server sends the request to the corresponding server. Incoming responses are sent to the
proxy server and stored for future requests from other clients.

The proxy server reduces the load on the original server, decreases traffic, and
improves latency. However, to use the proxy server, the client must be configured to
access the proxy instead of the target server.



SECTION 27.5 KEY TERMS 869

27.4 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books and sites. The items in brackets [...] refer to the reference list at the end of the text.

Books

HTTP is discussed in Chapters 13 and 14 of [Ste96], Section 9.3 of [PD03], Chapter 35
of [Com04], and Section 7.3 of [Tan03].

Sites

The following sites are related to topics discussed in this chapter.

o www.ietf.org/rfc.html Information about RFCs

RFCs

The following RFCs are related to WWW:

1614,1630,1737,1738

The following RFCs are related to HTTP:

2068,2109

27.5 KEY TERMS
active document

Active Server Pages (ASP)

applet

browser

ColdFusion

Common Gateway Interface (CGI)

dynamic document

entity header

general header

host

Hypertext Markup Language
(HTML)

Hypertext Preprocessor (PHP)

Hypertext Transfer Protocol (HTTP)

Java

JavaScript

Java Server Pages (JSP)

nonpersistent connection

path

persistent connection

proxy server

request header

request line

request type

response header

static document

status code

status line

tag

uniform resource locator (URL)

Web

World Wide Web (WWW)



870 CHAPTER 27 WWW AND HITP

27.6 SUMMARY
o The World Wide Web (WWW) is a repository of information linked together from

points all over the world.

o Hypertexts are documents linked to one another through the concept of pointers.

o Browsers interpret and display a Web document.

o A browser consists of a controller, client programs, and interpreters.

o A Web document can be classified as static, dynamic, or active.

o A static document is one in which the contents are fixed and stored in a server. The
client can make no changes in the server document.

o Hypertext Markup Language (HTML) is a language used to create static Web pages.

o Any browser can read formatting instructions (tags) embedded in an HTML
document.

o Tags provide structure to a document, define titles and headers, format text, control
the data flow, insert figures, link different documents together, and define execut­
able code.

o A dynamic Web document is created by a server only at a browser request.

o The Common Gateway Interface (CGI) is a standard for creating and handling
dynamic Web documents.

o A CGI program with its embedded CGI interface tags can be written in a language
such as C, C++, Shell Script, or Perl.

o An active document is a copy of a program retrieved by the client and run at the
client site.

o Java is a combination of a high-level programming language, a run-time environ­
ment, and a class library that allows a programmer to write an active document and
a browser to run it.

o Java is used to create applets (small application programs).

o The Hypertext Transfer Protocol (HTTP) is the main protocol used to access data
on the World Wide Web (WWW).

o HTTP uses a TCP connection to transfer files.

o An HTTP message is similar in form to an SMTP message.

o The HTTP request line consists of a request type, a URL, and the HTTP version
number.

o The uniform resource locator (URL) consists of a method, host computer, optional
port number, and path name to locate information on the WWW.

o The HTTP request type or method is the actual command or request issued by the
client to the server.

o The status line consists of the HTTP version number, a status code, and a status
phrase.

o The HTTP status code relays general information, information related to a successful
request, redirection information, or error information.

o The HTTP header relays additional information between the client and server.



SECTION 27. 7 PRACTICE SET 871

D An HTTP header consists of a header name and a header value.

D An HTTP general header gives general information about the request or response
message.

D An HTTP request header specifies a client's configuration and preferred document
format.

D An HTTP response header specifies a server's configuration and special information
about the request.

D An HTTP entity header provides information about the body of a document.

D HTTP, version 1.1, specifies a persistent connection.

D A proxy server keeps copies of responses to recent requests.

27.7 PRACTICE SET

Review Questions
1. How is HTTP related to WWW?

2. How is HTTP similar to SMTP?

3. How is HTTP similar to FTP?

4. What is a URL and what are its components?

5. What is a proxy server and how is it related to HTTP?

6. Name the common three components of a browser.

7. What are the three types of Web documents?

8. What does HTML stand for and what is its function?

9. What is the difference between an active document and a dynamic document?

10. What does CGI stand for and what is its function?

11. Describe the relationship between Java and an active document.

Exercises
12. Where will each figure be shown on the screen?

Look at the following picture:
then tell me what you feel:
<IMG SRC="PictureslFunnyl.gif" ALIGN=middle>
<lMG SRC="Pictures/Funny2.gif" ALIGN=bottom>
<B>What is your feeling? <IE>

13. Show the effect of the following HTML segment.
The publisher of this book is <A HREF="www.mhhe">
McGraw-Hill Publisher <fA>

14. Show a request that retrieves the document /usr/users/doc/docl. Use at least two
general headers, two request headers, and one entity header.

15. Show the response to Exercise 14 for a successful request.

16. Show the response to Exercise 14 for a document that has permanently moved to
/usr/deads/doc1.



872 CHAPTER 27 WWW AND HTTP

17. Show the response to Exercise 14 if there is a syntax error in the request.

18. Show the response to Exercise 14 if the client is unauthorized to access the document.

19. Show a request that asks for information about a document at /bin/users/file. Use at
least two general headers and one request header.

20. Show the response to Exercise 19 for a successful request.

21. Show the request to copy the file at location /bin/usr/bin/file1 to /bin/file1.

22. Show the response to Exercise 21.

23. Show the request to delete the file at location /bin/file!.

24. Show the response to Exercise 23.

25. Show a request to retrieve the file at location /bin/etc/file!. The client needs the
document only if it was modified after January 23, 1999.

26. Show the response to Exercise 25.

27. Show a request to retrieve the file at location /bin/etc/filel. The client should iden­
tify itself.

28. Show the response to Exercise 27.

29. Show a request to store a file at location /bin/letter. The client identifies the types
of documents it can accept.

30. Show the response to Exercise 29. The response shows the age of the document as
well as the date and time when the contents may change.


